Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[tetraaqua[μ_2 -1,4-bis(1,2,4triazol-1-vl)butane- $\kappa^2 N^4$: $N^{4'}$]cadmium(II)] sulfate]

Jing-Jing Song,^a Kou-Lin Zhang^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 1 November 2010; accepted 3 November 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.024; wR factor = 0.075; data-toparameter ratio = 13.3.

In the polymeric title compound, $\{[Cd(C_8H_{12}N_6)(H_2O)_4]$ - SO_4 , the Cd^{II} atom is located on an inversion center and coordinated by four water molecules and two 1,4-bis(1,2,4triazol-yl)butane ligands in a distorted CdO₄N₂ octahedral geometry. The 1,4-bis(1,2,4-triazol-yl)butane ligand is centrosymmetric, the mid-point of the central C-C bond being located on an inversion center. It links adjacent watercoordinated metal atoms into polymeric chains running along the c axis. Adjacent chains are linked by $O-H \cdots N$ hydrogen bonds. The S atom of the sulfate anion is located on a twofold rotation axis, thus the sulfate anion is equally disordered over two sites. The sulfate anion links with the polymeric chains via O-H···O hydrogen bonds, generating a three-dimensional supramolecular network.

Related literature

For a related structure, see: Ding et al. (2008).

Experimental

Crystal data [Cd(C₈H₁₂N₆)(H₂O)₄]SO₄ $M_r = 472.76$ Monoclinic, C2/c a = 12.1858 (9) Å b = 10.9733 (8) Å c = 12.4916 (9) Å $\beta = 90.227 \ (1)^{\circ}$

V = 1670.3 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.48 \text{ mm}^-$ T = 295 K $0.35 \times 0.20 \times 0.10 \text{ mm}$ $R_{\rm int} = 0.026$

7091 measured reflections

1922 independent reflections

1703 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.625, T_{\max} = 0.866$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of
$wR(F^2) = 0.075$	independent and constrained
S = 1.03	refinement
1922 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
145 parameters	$\Delta \rho_{\rm min} = -0.86 \ {\rm e} \ {\rm \AA}^{-3}$
25 restraints	

Table 1

Selected bond lengths (Å).

Cd1-O1 2.3308 (18) Cd1-N1 2.297 (2) Cd1-O2 2.2923 (19) 2				
Cd1-O2 2.2923 (19)	Cd1-O1	2.3308 (18)	Cd1-N1	2.297 (2)
	Cd1-O2	2.2923 (19)		

Table 2		
** 1		

Hydrogen-bond	geometry ([A, °]).
---------------	------------	--------	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H11O3	0.84 (3)	1.94 (2)	2.765 (10)	169 (4)
$O1 - H12 \cdot \cdot \cdot N2^i$	0.84(3)	2.04(1)	2.855 (3)	165 (4)
O2-H21···O4	0.84 (3)	1.91 (1)	2.736 (4)	167 (4)
$O2-H21\cdots O5^{ii}$	0.84(3)	1.79 (2)	2.588 (4)	158 (4)
O2−H22···O4 ⁱⁱⁱ	0.83 (3)	1.94 (2)	2.749 (4)	162 (4)
$O2-H22\cdots O6^{iv}$	0.83 (3)	1.99 (2)	2.753 (4)	152 (4)
Summatry andas	(i) $x + 3$		(ii) x + 1 y	- 1. (iii)

 $+\frac{1}{2}, -z+\frac{1}{2};$ (II) -x + 1, -y, -z + 1; (iv) $x, -y, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5081).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, J.-G., Liu, X.-G., Li, B.-L., Wang, Y.-Y. & Zhang, Y. (2008). Inorg. Chem. Commun. 11, 1079-1081.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, m1529 [doi:10.1107/S1600536810045009]

catena-Poly[[tetraaqua[μ_2 -1,4-bis(1,2,4-triazol-1-yl)butane- $\kappa^2 N^4$: N^4 ']cadmium(II)] sulfate]

J.-J. Song, K.-L. Zhang and S. W. Ng

Comment

The flexible bis-1,4-(1,2,4-triazol-1-yl)butane ligand binds to a number of cadmium salts to render chain motifs; when the counterion is also capable of bridging, two- and three-dimensional coordination networks are formed. The cadmium atom in polymeric $[Cd(H_2O)_4(C_8H_{12}N_6)^{2+}SO_4^{2-}]_n$ (Scheme I, Fig. 1) lies on a center-of-inversion. The ligand links adjacent water-coordinated metal atoms into a chain; the sulfate ion is not directly involved in coordination to the metal center. Adjacent chains are linked by hydrogen bonds to the disordered sulfate ion to generate a three-dimensional hydrogen-bonded network (Table 1). The metal center shows octahedral coordination.

With cadmium bis(perchlorate) and bis(tetrafluoroborate), the cadmium atom is connected to two ligands, and the six-coordinate geometry is completed by two water molecules (Ding *et al.*, 2008).

Experimental

Cadmium sulfate (0.209 g, 0.10 mmol) was dissolved in a water-DFM mixture (5 ml:3 ml), and to this was added 1,4bis(1,2,4-triazol-1-yl)butane (0.384 g, 0.20 mmol) dissolved in water (5 ml). The solution was set aside for the growth of colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were refined.

The sulfate ion is disodered with respect to the oxygen atoms only; these were refined as half-occupancy atoms off the twofold rotation axis. The sulfur–oxygen distances were restrained to within 0.01 Å of each other as were the oxygen–oxygen distances.

Figures

Fig. 1. [Thermal ellipsoid plot (Barbour, 2001) of a fragment of the polymeric structure of $[Cd(H_2O)_4(C_8H_{12}N_6)^{2+}.SO_4^{2-}]_n$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Inversion symmetry-related atoms are not labeled.

catena-Poly[[tetraaqua[μ_2 -1,4-bis(1,2,4-triazol-1-yl)butane- $\kappa^2 N^4$: N^4]cadmium(II)] sulfate]

F(000) = 952

 $\theta = 2.5 - 27.6^{\circ}$

 $\mu = 1.48 \text{ mm}^{-1}$

Prism, colorless

 $0.35 \times 0.20 \times 0.10 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.880 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4284 reflections

Crystal data

[Cd(C₈H₁₂N₆)(H₂O)₄]SO₄ $M_r = 472.76$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.1858 (9) Å b = 10.9733 (8) Å c = 12.4916 (9) Å β = 90.227 (1)° V = 1670.3 (2) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer	1922 independent reflections
Radiation source: fine-focus sealed tube	1703 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 15$
$T_{\min} = 0.625, T_{\max} = 0.866$	$k = -13 \rightarrow 14$
7091 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.075$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0459P)^{2} + 1.6989P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1922 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
145 parameters	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
25 restraints	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cd1	0.7500	0.2500	0.5000	0.02963 (11)	

S1	0.5000	0.07764 (7)	0.2500	0.02981 (18)	
01	0.60887 (16)	0.34194 (16)	0.40281 (15)	0.0409 (4)	
02	0.65422 (17)	0.07057 (19)	0.50971 (16)	0.0459 (5)	
O3	0.4869 (9)	0.2093 (3)	0.2565 (9)	0.0469 (19)	0.50
O4	0.5016 (3)	0.0222 (4)	0.3542 (3)	0.0521 (10)	0.50
05	0.4146 (3)	0.0243 (4)	0.1823 (3)	0.0525 (11)	0.50
O6	0.6087 (3)	0.0513 (4)	0.1970 (3)	0.0590 (11)	0.50
N1	0.82340 (17)	0.1877 (2)	0.34004 (15)	0.0371 (4)	
N2	0.8666 (2)	0.0739 (2)	0.19781 (18)	0.0438 (5)	
N3	0.87109 (16)	0.1946 (2)	0.17182 (16)	0.0347 (4)	
C1	0.8375 (2)	0.0763 (3)	0.2994 (2)	0.0443 (6)	
H1	0.8276	0.0059	0.3396	0.053*	
C2	0.8456 (3)	0.2611 (2)	0.2566 (2)	0.0368 (6)	
H2	0.8433	0.3458	0.2583	0.044*	
C3	0.8972 (2)	0.2345 (2)	0.0628 (2)	0.0393 (6)	
H3A	0.9610	0.1902	0.0376	0.047*	
H3B	0.9154	0.3205	0.0638	0.047*	
C4	0.8012 (2)	0.2132 (3)	-0.0145 (2)	0.0382 (5)	
H4A	0.7828	0.1272	-0.0147	0.046*	
H4B	0.8239	0.2350	-0.0864	0.046*	
H11	0.579 (3)	0.296 (3)	0.358 (2)	0.064 (10)*	
H12	0.619 (3)	0.4147 (14)	0.385 (3)	0.062 (10)*	
H21	0.616 (3)	0.056 (4)	0.455 (2)	0.078 (12)*	
H22	0.618 (3)	0.040 (4)	0.560(2)	0.088 (14)*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03598 (16)	0.03235 (16)	0.02057 (15)	-0.00111 (8)	0.00354 (10)	-0.00067 (8)
S1	0.0366 (4)	0.0257 (4)	0.0271 (4)	0.000	-0.0052 (3)	0.000
O1	0.0520 (10)	0.0321 (10)	0.0386 (9)	-0.0044 (8)	-0.0095 (8)	0.0052 (8)
O2	0.0569 (12)	0.0455 (11)	0.0352 (10)	-0.0168 (9)	-0.0035 (9)	0.0039 (8)
O3	0.063 (5)	0.0271 (13)	0.051 (3)	0.011 (3)	-0.015 (3)	-0.009 (3)
O4	0.060 (2)	0.068 (3)	0.0287 (18)	-0.019 (2)	-0.0095 (17)	0.0215 (18)
O5	0.065 (3)	0.047 (2)	0.045 (2)	-0.019 (2)	-0.028 (2)	0.0080 (18)
O6	0.054 (2)	0.064 (3)	0.059 (3)	0.005 (2)	0.017 (2)	-0.012 (2)
N1	0.0476 (11)	0.0398 (12)	0.0240 (9)	0.0033 (9)	0.0033 (8)	-0.0036 (8)
N2	0.0611 (14)	0.0348 (11)	0.0357 (11)	0.0066 (10)	0.0042 (10)	-0.0007 (9)
N3	0.0382 (10)	0.0387 (11)	0.0273 (10)	-0.0016 (9)	0.0004 (8)	-0.0009 (9)
C1	0.0628 (16)	0.0365 (13)	0.0336 (12)	-0.0015 (12)	0.0049 (12)	0.0030 (10)
C2	0.0476 (15)	0.0340 (13)	0.0287 (13)	-0.0014 (9)	0.0025 (11)	-0.0054 (9)
C3	0.0392 (13)	0.0501 (16)	0.0287 (13)	-0.0042 (10)	0.0063 (11)	0.0036 (10)
C4	0.0464 (14)	0.0427 (13)	0.0254 (11)	-0.0018 (12)	0.0024 (10)	-0.0020 (11)

Geometric parameters (Å, °)

Cd1—O1	2.3308 (18)	N1—C1	1.334 (3)
Cd1—O1 ⁱ	2.3308 (18)	N1—C2	1.345 (4)

supplementary materials

Cd1—O2 ⁱ	2.2923 (19)	N2—C1	1.319 (3)
Cd1—O2	2.2923 (19)	N2—N3	1.365 (3)
Cd1—N1	2.297 (2)	N3—C2	1.325 (4)
Cd1—N1 ⁱ	2.2967 (19)	N3—C3	1.467 (4)
S1—O4	1.437 (3)	C1—H1	0.9300
S1—O3	1.456 (3)	С2—Н2	0.9300
S1—O5	1.461 (3)	C3—C4	1.533 (4)
S1—O6	1.511 (3)	С3—НЗА	0.9700
O1—H11	0.84 (3)	С3—Н3В	0.9700
O1—H12	0.84 (3)	$C4-C4^{II}$	1.530 (5)
O2—H21	0.84 (3)	C4—H4A	0.9700
O2—H22	0.83 (3)	C4—H4B	0.9700
O2 ⁱ —Cd1—O2	180.0	H21—O2—H22	104 (4)
O2 ⁱ —Cd1—N1	90.55 (8)	C1—N1—C2	103.1 (2)
O2—Cd1—N1	89.45 (8)	C1—N1—Cd1	130.93 (17)
O2 ⁱ —Cd1—N1 ⁱ	89.45 (8)	C2—N1—Cd1	125.14 (17)
O2—Cd1—N1 ⁱ	90.55 (8)	C1—N2—N3	102.7 (2)
N1—Cd1—N1 ⁱ	180.0	C2—N3—N2	109.6 (2)
O2 ⁱ —Cd1—O1	88.59 (7)	C2—N3—C3	129.1 (2)
O2—Cd1—O1	91.41 (7)	N2—N3—C3	121.3 (2)
N1—Cd1—O1	87.98 (7)	N2—C1—N1	114.9 (2)
N1 ⁱ —Cd1—O1	92.02 (7)	N2—C1—H1	122.6
O2 ⁱ —Cd1—O1 ⁱ	91.41 (7)	N1—C1—H1	122.6
O2-Cd1-O1 ⁱ	88.59 (7)	N3—C2—N1	109.8 (2)
N1—Cd1—O1 ⁱ	92.02 (7)	N3—C2—H2	125.1
$N1^{i}$ —Cd1—O1 ⁱ	87.98 (7)	N1—C2—H2	125.1
O1—Cd1—O1 ⁱ	180.0	N3—C3—C4	111.8 (2)
O4—S1—O3	111.7 (4)	N3—C3—H3A	109.3
O4—S1—O5	111.2 (2)	С4—С3—НЗА	109.3
O3—S1—O5	110.6 (4)	N3—C3—H3B	109.3
O4—S1—O6	107.9 (2)	С4—С3—Н3В	109.3
O3—S1—O6	108.1 (4)	НЗА—СЗ—НЗВ	107.9
O5—S1—O6	107.1 (2)	C4 ⁱⁱ —C4—C3	113.0 (3)
Cd1—O1—H11	114 (3)	C4 ⁱⁱ —C4—H4A	109.0
Cd1—O1—H12	116 (2)	C3—C4—H4A	109.0
H11—O1—H12	118 (4)	C4 ⁱⁱ —C4—H4B	109.0
Cd1—O2—H21	114 (3)	C3—C4—H4B	109.0
Cd1—O2—H22	131 (3)	H4A—C4—H4B	107.8
O2 ⁱ —Cd1—N1—C1	156.6 (2)	N3—N2—C1—N1	-0.1 (3)
O2—Cd1—N1—C1	-23.4 (2)	C2—N1—C1—N2	0.0 (3)
O1—Cd1—N1—C1	-114.8 (2)	Cd1—N1—C1—N2	169.75 (18)
O1 ⁱ —Cd1—N1—C1	65.2 (2)	N2—N3—C2—N1	-0.2 (3)
O2 ⁱ —Cd1—N1—C2	-35.6 (2)	C3—N3—C2—N1	177.6 (2)
O2—Cd1—N1—C2	144.4 (2)	C1—N1—C2—N3	0.1 (3)

O1—Cd1—N1—C2	52.9 (2)	Cd1—	-N1—C2—N3		-170.44 (16)
O1 ⁱ —Cd1—N1—C2	-127.1 (2)	C2—1	N3—C3—C4		-103.8 (3)
C1—N2—N3—C2	0.1 (3)	N2—1	N3—C3—C4		73.7 (3)
C1—N2—N3—C3	-177.9 (2)	N3—0	C3—C4—C4 ⁱⁱ		63.0 (4)
Symmetry codes: (i) $-x+3/2, -y+1/2, $	-z+1; (ii) $-x+3/2$, $-z$	y+1/2, -z.			
Hydrogen-bond geometry (Å, °)					
D—H···A	D—	–H	H···A	$D \cdots A$	D—H··· A
O1—H11…O3	0.84	4 (3)	1.94 (2)	2.765 (10)	169 (4)
O1—H12···N2 ⁱⁱⁱ	0.84	4 (3)	2.04 (1)	2.855 (3)	165 (4)
O2—H21…O4	0.84	4 (3)	1.91 (1)	2.736 (4)	167 (4)
O2—H21…O5 ^{iv}	0.84	4 (3)	1.79 (2)	2.588 (4)	158 (4)
O2—H22···O4 ^v	0.8	3 (3)	1.94 (2)	2.749 (4)	162 (4)
O2—H22…O6 ^{vi}	0.8	3 (3)	1.99 (2)	2.753 (4)	152 (4)
Symmetry codes: (iii) $-x+3/2$, $y+1/2$, -	-z+1/2; (iv) $-x+1$, y	z, -z+1/2; (v) -x+1/2; (v) -	+1, -y, -z+1; (vi) x,	-y, z+1/2.	

